Skip to main content
Industrial Research And Consultancy Centre

Lost In Transition

Urban-rural transition zones are a breeding ground for unexpected changes in resources and livelihood, shows study from IIT Bombay

Increasing demand for space in cities are forcing people to move to surrounding rural regions, which are more affordable. These areas, called peri-urban regions, have a mix of rural and urban elements. In a study, researchers from the Indian Institute of Technology Bombay (IIT Bombay) have observed that the natural resources were stressed and livelihoods changed to non-agricultural means in the  peri-urban regions around Mumbai.  

GIS based Flood Assessment

Floods in Mumbai due to heavy rains on 26th July 2005 took a toll of more than 400 lives and resulted in economic loss of over Rs. 5000 crore. The events of that day highlighted the importance of designing constructions for floods. A flood model that can predict the amount of flooding in a region could be of great utility in minimising the damages.

The organic way to energy storage

Today, energy is the catalyst for economic growth of any country. Data from the BP statistical review of world energy 2017 as shown in Fig. 1 suggests a decrease of about 10% in consumption of energy from oil (green line) and coal (navy line) have been observed over the last 50 years. This has been gradually replaced by other clean energy sources with a major contribution coming from nuclear (orange) and renewable energy source (dark orange).

Multi-scale computational study of boiling heat transfer

Subcooled flow boiling enables high heat extraction, an immensely beneficial feature in a number of industrial systems. Herein, subcooled liquid enters the tube, and boiling commences at the wall, at a location where the temperature of the liquid adjacent to the wall exceeds the saturation temperature. This location is known as Onset of Nucleate Boiling (ONB). At a downstream location, the bubbles forming at the wall become more in number and start to depart from the wall, which is popularly known as the Onset of Significant Void (OSV) (Fig. 1).

Formulation of high new high energy density materials for use in rocket engines and other important applications

Rocket engines, gas generation mechanisms such as automobile air bags and explosive devices employ high energy density materials (HEDMs) as fuels. Formulating an HEDM having high specific impulse, high density, low production cost, low sensitivity to impact and friction and low toxicity all at the same time is extremely challenging. In this regard, cage compounds with their severely strained molecular structures look promising. Chemical synthesis of such compounds is expensive and tedious.

Electrochemical energy storage materials for powering electric vehicles

Majority of the portable electronic devices used in our day-to-day life, starting from basic cell phone, smart phone, laptop, digital camera, camcorder, tablet, power tools etc. use Li-ion batteries as the power source. Imagine the next generation automobiles also running on such batteries, instead of burning fossil fuels and causing environmental pollution. Yes, there is a definite possibility for the same, leading to saving our environment and having us breathe fresh air, even in the cities.

Plasmonics: The way to efficient photodevices via two-photon lithography

A photodiode is a device capable of converting light energy into electrical signal. The materials used to make these devices critically define the properties and performance of the photo-devices. Thus the materials primarily act as a detrimental factor in limiting the performance of these photo- devices. This bottleneck can be removed partially by using plasmonic structures which can be fabricated easily by two-photon lithography (TPL).

Energy extraction from vortex induced vibration of bi-stable structures

Any elastic structure vibrates in the presence of fluid flow; for instance, we can see leaves in a tree, attached to branches via elastic stems, oscillate furiously on a windy day. These vibrations often occur due to vortices, which are essentially regions of intense fluid rotation. Vortices are periodically shed behind any solid body placed in a fluid flow, and they tend to ‘kick’ the solid as they are shed.

Development of constant temperature microdevice

In several biological applications, it is required to maintain the cells above / below the room temperature implying the need for heating / cooling the microdevice. For instance, in polymerase chain reaction (PCR) a particular DNA sequence is amplified and used in applications such as pathogen detection and hereditary disorder diagnosis. The entire process takes place in 3 steps: denaturation, annealing and extension for which the different stations are required to be maintained at constant temperatures of 95°C, 55°C and 72°C, respectively.

Electricity from waste heat

More than 40% of energy in fossil fuels is lost in the form of ‘heat’ during different conversion processes. This results in not only inefficient usage of natural resources but also leads to environmental and water pollution. One of the techniques that can be used to recover this ‘waste heat’ is via a ‘thermoelectric generator’ which has no moving parts and converts heat directly into electrical power. Our research is focused on developing suitable materials for this purpose with the aim that they have high conversion efficiencies.

Intrinsically conducting polymers for energy storage

Intrinsically conducting polymers such as polyaniline, polythiophene, polypyrrole and polyethylenedioxy thiophene are not only good conductors of electricity, but also possess a property called pseudo-capacitance, which allows them to store electric charge through redox reaction. They therefore possess much higher power density than a battery and phenomenally higher energy density than a capacitor. This dual advantage makes them useful as ‘flywheels’ in energy storage systems. These ‘flywheels’ store surplus energy and provide it when needed.

Molecular nanomagnets: An alternative to silicon-based technology

In order to sustain the progress in the ever growing digital technology, there is need for new tools and resources that more efficiently store and processes digital information along with better economic spending, lower energy consummation and low environmental impact. However, the miniaturisation of electronic devices using current silicon-based technology is about to reach its maximum limit. In order to overcome this difficulties, scientists have now turned their focus to alternative routes.

Wide area measurement applications in power systems

The technology of wide-area measurements systems (WAMS) aims to make available high-quality, system-wide measurements for enhanced monitoring, control and protection applications in a large power system. A key feature of this technology is the precise time synchronisation of the measurements using global position system (GPS) satellites.This feature also allows for the direct measurement of phase angular differences between phasors at distant locations in a power grid. The advent of WAMS has spurred the development of novel methods to determine the health of a power grid.

Development of low temperature refrigerators: Production of temperatures below -150°C

Low temperature refrigerators or cryocoolers generate temperatures below -150°C. Depending upon the working cycle or operating principles, there are various types of cryocoolers like Joule-Thompson, Stirling, Gifford-McMahon (GM), Pulse Tube, etc. These refrigerators are used to cool electronics, detectors in thermal imaging, gas cooling, cooling of pharma products,

Thermosyphon system for electronics cooling

With growth and advancement in science and technology, electronics and electrical systems continue to be placed in denser packaging and smaller enclosures. All electronic and electrical devices heat up while working. Due to compact packaging, their temperature rises as sufficient heat cannot be dissipated naturally. For high efficiency and reliable performance of electronic equipment, the rising of temperature above room temperature needs to be controlled. High rise in temperature can be detrimental for the working of the devices.

Enhanced heat transfer using deformable thin plates: Flexible fins

The use of fins to improve heat transfer in engineering systems such as heat-sinks, radiators and IC engines is very common. The present work numerically examines improvements or changes in thermal augmentation, which is possible if a deformable, fin-like structure instead of a rigid one is employed. In biology, employing flexible structures to improve heat transfer is common; for example, elephants thermoregulate their bodies by flapping their large ears, and thermal transport enhancement by oscillating cilia.