Chemistry of phosphorus compounds: Options are endless
The research in our laboratory is focused on designing and developing novel, inexpensive and stable phosphorus based compounds to study their organometallic chemistry and explore their catalytic and medicinal applications. Our group is also focusing on designing multifunctional phosphorus based ligands for making homoleptic soft-soft metal-organic frameworks for catalytic, material and photophysical applications.
Protein based novel multi-functional biomaterials
Design and development of muti-functional, hierarchically structured, and highly ordered materials is the key to the advancement in the field of materials nanochemistry, and bionanotechnology. These fields are likely to play an important role in driving markets, and economies in the developing countries by fulfilling their high demand towards the improvement in health, and energy sector. Specifically, the formation of biodegradable materials with novel properties, multiple functions, improved efficiency, and higher sensitivity can cater to the demand of health and diagnostics industry.
Carbon nanotube-noble metal nanohybrid catalysed organic transformations
■ Metal nanoparticles of gold (Au), ruthenium (Ru), rhodium (Rh) and palladium (Pd) supported by a carbon nanotube (CNT): supramolecular assembly are highly efficient heterogeneous catalysts for various organic reactions
■ Oxidation of alcohols, phenols, silanes, hydroxylamines and olefins, reductive amination and N-formylation of aldehydes, reduction of N-oxides and nitroaromatics as well as coupling reactions have been successfully carried out with the above M CNT catalyst
Dynamics in crowded and active medium
We have been involved in understanding the mechanism of transport in crowded and active medium. For this, we build statistical mechanical models and solve it either analytically or on a computer, when complicacy of the problem does not allow exact analytical solutions. Availability of single molecule data also makes it possible to compare our results with experiments. A realistic example would be biological cell where presence of cell organelles makes it highly crowded.
Printable and flexible transparent conducting electrodes and display devices
Touch screens have become the ubiquitous interface for controlling contemporary electronic devices and incorporated into almost all the new technologies starting from smart phones, computers, flat panel televisions to personal gadgets and household appliances. One of the key components of touch screen is a transparent conducting electrode (TCE) which is optically transparent and electronically conductive. TCEs are also the backbone of optoelectronic devices eg. organic light emitting devices (OLEDs), photovoltaics (PVs), liquid crystal devices (LCDs) electro chromical devices (ECDs) etc.
Studying chemical reactions using transition state modeling
Our research focuses on chemical reactivity and catalysis. When two molecules react to form product(s), there are different likely pathways that one can think of. Energies of various intermediates and transition states connecting such intermediates involved in the reaction has an enormous effect on the pathway a reaction would proceed through. We employ ab initio and density functional theory computational methods to identify the nature of intermediates and transition states involved in catalytic reactions.
Single-crystalline gold substrates for surface enhanced Raman spectroscopy
Surface enhanced Raman scattering (SERS) spectroscopy, a powerful contemporary tool for studying low-concentration analytes via surface plasmon induced enhancement of local electric field, is of utility in biochemistry, material science, threat detection, and environmental studies. We have developed a simple, fast, scalable, and relatively low-cost optical method of fabricating and characterising large-area, reusable and broadband SERS substrates with long storage lifetime.
Experimenting with complex fluid flows: Resolving a range of scales
‘High-resolution and non-intrusive’ experimental measurements are indispensible for study of complex fluid flows that are frequently encountered in industrial and environmental situations. In today’s age and technology, it is possible to do so with the help of laser-based optical imaging. Our research focuses on using non-intrusive techniques to study instabilities, mixing, and turbulence in complex flows by capturing a spectrum of length-scales ranging from micrometer to centimeter. This ensures that both large-and small-scale flow features are resolved with considerable accuracy.
Low temperature transport in superconducting semiconductors and other mesoscopic structures
Semiconductors and superconductors are generally thought to be two very different types of materials. Indeed superconductors are usually metals, alloys and certain oxides with high electron densities. Semiconductors have much lower electron densities. However there are some semiconductors which become superconducting at low temperatures.
Optical, X-ray fluorescence spectroscopy for compositional analysis
Often rapid and precise identification of composition of raw and finished products (on and off the site) are vital in several industries like mining, pharmaceutical, petrochemical, agriculture and food processing, etc. Our laboratory offers solutions for in situ analysis of materials in such challenging environments using reflectance, emission (optical) and X-ray fluorescence spectroscopic techniques.