
प्रसुप्त क्षयरोग में जीवाणुओं को मिलता है एंटिबायोटिक्स को निष्प्रभ करनेवाला सुरक्षा कवच

क्षयरोग के जीवाणु प्रसुप्त अवस्था में अपने बाह्य आवरण में होने वाले परिवर्तन के कारण प्रतिजैविक (एंटीबायोटिक्स) से बच कर लंबे समय तक जीवित रह सकते हैं।

क्षयरोग उत्पन्न करने वाला माइकोबैक्टीरियम ट्यूबरकुलोसिस जीवाणु श्रेय: NIAID, <u>CC BY 2.0</u>, via <u>Wikimedia Commons</u> (cropped)

क्षय रोग (टीबी) एक शताब्दी से भी अधिक समय से एक गंभीर वैश्विक स्वास्थ्य समस्या बना हुआ है। क्षयरोग माइकोबैक्टीरियम ट्यूबरकुलोसिस नामक जीवाणु के कारण होता है। प्रभावी प्रतिजैविकों (एंटीबायोटिक्स) और व्यापक टीकाकरण अभियानों के उपरांत भी, यह रोग मृत्यु का कारण बना हुआ है। केवल 2023 वर्ष में लगभग 1 करोड़ से अधिक लोग टीबी से ग्रसित हुए और 12 लाख से अधिक लोगों की इससे मृत्यु हो गई। इस रोग का सबसे अधिक भार भारत पर है, जहाँ 2024 में 26 लाख से अधिक रोगी पाए गए। ये आँकड़े दर्शाते हैं कि टीबी को समाप्त करने का लक्ष्य अभी बहुत दूर है, और वैज्ञानिक अभी भी यह समझने का प्रयास कर रहे हैं कि यह रोग क्यों बना हुआ है।

क्षय रोग को नियंत्रित करना अत्यंत कठिन होने का एक कारण यह है कि प्रारंभिक संक्रमण के बाद यह जीवाणु एक विश्राम अवस्था में प्रवेश कर सकता है, जिसे अव्यक्त (लेटेंट) या प्रसुप्त (डॉर्मेंट) टीबी कहा जाता है। इस चरण में जीवाणु जीवित तो रहते हैं, परंतु निष्क्रिय हो जाते हैं तथा कभी-कभी कई वर्षों तक इस अवस्था में रहते हैं। अव्यक्त टीबी वाले व्यक्तियों में कोई लक्षण नहीं होते हैं और वे इस रोग को फैला

नहीं सकते हैं। किंतु यदि प्रतिरक्षा प्रणाली (इम्यून सिस्टम) क्षीण हो जाए, तो ये जीवाणु पुनः सक्रिय हो सकते हैं। अधिकांश प्रतिजैविक (एंटीबायोटिक) केवल उन टीबी जीवाणुओं पर कार्य करते हैं जो सक्रिय रूप से विभाजित हो रहे होते हैं; इसलिए, प्रसुप्त अवस्था की टीबी कोशिकाएँ, जो बहुत धीमी गित से बढ़ती हैं अथवा बढ़ती ही नहीं हैं, वे उपचार से बच सकती हैं। ये कोशिकाएँ संक्रमित व्यक्ति के भीतर बनी रहती हैं, जिससे वे प्रतिजैविक सहनशीलता (एंटीबायोटिक टॉलरेंस) दर्शाती हैं।

भारतीय प्रौद्योगिकी संस्थान मुंबई के रसायन विज्ञान विभाग की प्राध्यापिका शोभना कपूर और मोनैश विश्वविद्यालय की प्रोफेसर मेरी-इसाबेल अग्विलार के मार्गदर्शन में किए गए एक नए अध्ययन में, शोधदल ने एक महत्वपूर्ण प्रश्न का उत्तर देने का प्रयास किया: प्रसुप्त टीबी जीवाणु प्रतिजैविकों से इतने अप्रभावित क्यों रहते हैं? केमिकल साइंस नामक जर्नल में प्रकाशित उनके अध्ययन ने इस बात की खोज की है कि जीवाणु प्रतिजैविक उपचार के दौरान कैसे जीवित रहते हैं और क्या है जो उन्हें इस उपचार को सहन करने की शक्ति प्रदान करता है। इस शोध से यह भी पता चलता है कि यदि उपचार के चलते जीवाणुओं के टिके रहने के तंत्र में हस्तक्षेप किया जाए, तो उपलब्ध टीबी औषधिओं को अधिक प्रभावी बनाया जा सकता है।

विद्यमान ज्ञान के आधार पर, प्रा. कपूर के शोधदल को संदेह था कि औषिध से अप्रभावित रहने का रहस्य जीवाणु की झिल्लियों (मेम्ब्रेन्स) में छिपा हो सकता है— ये झिल्लियाँ वसा या लिपिड से बनी जिटल भित्तियाँ होती हैं जो कोशिका की रक्षा करती हैं। इसे अधिक समझने हेतु उन्होंने विभिन्न परिस्थितियों में झिल्ली के गुणों का परीक्षण किया, जिसमें सिक्रिय अवस्था से प्रसुप्त अवस्था में परिवर्तित होने पर टीबी जीवाणु की झिल्लियाँ कैसे परिवर्तित होती हैं इसका परीक्षण भी सिम्मिलित था। उन्होंने यह भी परीक्षण किया कि क्या इन परिवर्तनों से प्रतिजैविकों का कोशिका में प्रवेश करना प्रभावित होता है या नहीं।

संक्रमण के संकट के कारण क्षय रोग के जीवाणु को प्रयोगशाला में संभालना जोखिम भरा होता है। इसलिए, अपने प्रयोगों के लिए शोधकर्ताओं ने टीबी-जीवाणु के हानिरहित रिश्तेदार का उपयोग किया, जिसे माइकोबैक्टीरियम स्मेग्मैटिस कहते हैं। यह टीबी-जीवाणु के समान ही व्यवहार करता है, परंतु इस जीवाणु का निरीक्षण तथा अध्ययन सामान्य प्रयोगशालाओं में सुरक्षित रूप से किया जा सकता है। शोधदल ने जीवाणु को दो परिस्थितियों में संवर्धित किया : पहली वह सक्रिय अवस्था जब जीवाणु शीघ्रता से विभाजित हो रहे थे, जैसा कि सक्रिय संक्रमण में होता है, और दूसरी परिस्थिति, जो बाद में आनेवाली प्रसुप्त अवस्था (डॉमेंसी) का अनुकरण करती है, जैसा कि अव्यक्त (लेटेंट) संक्रमणों में देखा जाता है।

इन परिस्थितियों ने प्रतिजैविकों की प्रभावशीलता को प्रभावित किया या नहीं यह देखने के लिए शोधदल ने माइकोबैक्टीरियम स्मेग्मैटिस जीवाणु को टीबी की चार सामान्य औषधियों : रिफाब्यूटिन, मोक्सीफ्लोक्सासिन, अमीकासिन, और क्लैरिथ्रोमाइसिन के संपर्क में लाया। उन्होंने पाया कि जीवाणु की 50% वृद्धि को रोकने के लिए आवश्यक औषधियों की सांद्रता (कंसंट्रेशन) सिक्रय जीवाणु की तुलना में प्रसुप्त जीवाणु में दो से दस गुना अधिक थी। दूसरे शब्दों में, "वही औषि जो रोग के प्रारंभिक चरण में प्रभावी थी, अब प्रसुप्त टीबी कोशिकाओं को मारने के लिए बहुत अधिक सांद्रता में आवश्यक हो गयी। यह परिवर्तन जेनेटिक उत्परिवर्तन (म्यूटेशन) के कारण नहीं हुआ था, जो सामन्यतः प्रतिजैविक प्रतिरोधकता (एंटीबायोटिक रेज़िस्टेंस) में होता हैं," प्रा. कपूर कहती हैं। प्रयोगों में उपयोग किए गए माइकोबैक्टीरियम स्मेग्मैटिस की जीनीय वंश प्रकार (जेनेटिक स्ट्रेन) में प्रतिजैविक प्रतिरोधकता से जुड़े कोई उत्परिवर्तन (म्यूटेशंस) नहीं थे, जिससे यह पृष्टि हुई कि औषध के प्रति कम हुई संवेदनशीलता (ड्रग सेंसिटिविटी) जीवाणु

की प्रसुप्त अवस्था और संभवतः उनकी झिल्ली की परतों से जुड़ी हो सकती है, न कि जीनीय परिवर्तनों से।

जीवाणु के दो विभिन्न चरणों में लिपिड की विशिष्ट भिन्न रुपरेखा (प्रोफाइल) उपस्थित हैं या नहीं यह खोजने हेतु शोधकर्ताओंने 'अडवांस्ड मास स्पेक्ट्रोमेट्री' नामक तकनीक का उपयोग किया एवं जीवाणु झिल्लियों में 270 से अधिक विशिष्ट लिपिड अणुओं (लिपिड मॉलिक्यूल्स) की पहचान की। भारतीय प्रौद्योगिकी संस्थान मुंबई की आईआईटीबी-मोनैश रिसर्च एकेडमी की पीएचडी छात्रा और प्रा. कपूर की प्रयोगशाला में कार्यरत अध्ययन की मुख्य लेखिका अंजना मेनन कहती हैं, "हमने सिक्रिय और प्रसुप्त कोशिकाओं के लिपिड प्रोफाइल के मध्य स्पष्ट अंतर देखे।" सिक्रय जीवाणुओं में ग्लिसरोफॉस्फोलिपिड्स और ग्लाइकोलिपिड्स नामक मेद पदार्थों से झिल्ली समृद्ध थी; जबिक प्रसुप्त जीवाणुओं में, वसीय अम्ल (फैटी एसिड्स - लंबी, मोमी संरचना वाले अणु) झिल्ली पर अधिक उपस्थित थे।

शोधकर्ताओं ने सक्रिय और प्रसुप्त जीवाणुओं के मध्य लिपिड पदार्थों के इन अंतरों के जीवाणु पर होने वाले भौतिक परिणामों को समझने हेतु, फ्लोरेसेंस-आधारित विधियों का उपयोग किया एवं यह मापा कि ये लिपिड कितनी दृढ़ता से संगठित हैं। इस गुण को झिल्ली तरलता (मेम्ब्रेन फ्लूइडिटी) कहा जाता है। सक्रिय जीवाणुओं की झिल्लियाँ शिथिल तथा तरल थीं, जबिक प्रसुप्त जीवाणुओं में कठोर, संगठित संरचनाएँ थीं। उदाहरणस्वरूप, कार्डियोलिपिन नामक एक प्रमुख लिपिड प्रसुप्त कोशिकाओं में बहुत कम था। सुश्री मेनन स्पष्ट करती हैं, "कार्डियोलिपिन झिल्ली को थोड़ा शिथिल रखने में सहायता करता है। जब इसका स्तर कम होता है, तो झिल्ली अधिक दृढ़ता से व्यवस्थित और कम पारगम्य (परिमएबल) हो जाती है।"

प्रा. कपूर का कहना है, "लोग दशकों से प्रोटीन के दृष्टिकोण से टीबी का अध्ययन करते आ रहे हैं। परंतु लिपिड को लंबे समय तक निष्क्रिय घटक माना जाता था। अब हमें पता चला है कि जीवाणु को जीवित रहने और औषधियों का प्रतिरोध करने में लिपिड सक्रिय रूप से सहायता करते हैं।"

शोधदल ने आगे यह परिक्षण किया कि रिफाब्यूटिन नामक प्रतिजैविक इन झिल्लियों के साथ कैसे परस्परक्रिया करता है। उन्होंने पाया कि रिफाब्यूटिन सक्रिय कोशिकाओं में तो आसानी से प्रवेश कर सकता है, परंतु प्रसुप्त कोशिकाओं की बाह्य झिल्ली को पार करना उसके लिए कठिन है। प्रसुप्त जीवाणु के बारे में बताते हुए प्रा. कपूर कहती हैं, "झिल्ली का कठोर बाह्य आवरण मुख्य बाधा बन जाता है। यह जीवाणु की रक्षा की पहली एवं सबसे शक्तिशाली सुरक्षा रेखा है।"

प्रतिजैविकों को रोकनेवाली बाह्य झिल्ली को दुर्बल करने से औषधियों का प्रभाव सुधारा जा सकता है। प्रा. कपूर का शोधदल अब इसी दिशा में कार्यरत है। वर्तमान में टीबी का उपचार कम से कम छह महीने तक चलता है, और प्रसुप्त जीवाणु प्रायः इस लंबी अविध के उपचार के पश्चात भी जीवित रह जाते हैं। शोधकर्ताओं का सुझाव है कि केवल नए प्रतिजैविकों का विकास करने के स्थान पर, उपलब्ध औषधियों में सुधार किया जाए। प्रा. कपूर कहती हैं, "यिद पुरानी औषधियों को भी एक ऐसे अणु के साथ संयोजित किया जाए जो बाह्य झिल्ली को शिथिल कर दें, तो इन औषधियों का प्रभाव अधिक अच्छा हो सकता हैं।" यह दृष्टिकोण जीवाणु को स्थायी रूप से प्रतिरोध (पर्मनंट रेज़िस्टेंस) विकसित करने का अवसर दिए बिना, उन्हें फिर से औषधियों के प्रति संवेदनशील बना सकता है।

यह दल आगे अब सूक्ष्मजीवरोधी (एंटीमाइक्रोबियल) पेप्टाइड्स, जो कि छोटे प्रोटीन होते हैं, उनका अध्ययन

कर रहा है। ये पेप्टाइड्स जीवाणु-झिल्लियों को थोड़ा छिद्रपूर्ण (लीकी) बना सकते हैं। उनका मानना है कि उपचार में अतिरिक्त घटक के रूप में इन पेप्टाइड्स का संभावित उपयोग किया जा सकता है। प्रा. कपूर कहती हैं, "ये पेप्टाइड्स अकेले जीवाणु को नहीं मार सकते, परंतु जब इन्हें प्रतिजैविकों के साथ संयोजित किया जाता है, तब ये पेप्टाइड्स औषधियों को प्रवेश करने और अधिक प्रभावी ढंग से कार्य करने में सहायता करते हैं।"

इस अध्ययन में प्रयोगों के लिए एक हानिरहित जीवाणु का उपयोग किया गया। अधिक सुरक्षा की स्थितियों में वास्तविक टीबी जीवाणु के साथ परिणामों की पृष्टि की जाना अगला चरण होगा। सुश्री मेनन बताती हैं कि उनके काम का विस्तार वास्तविक टीबी जीवाणु पर किया जा सकता है। वे कहती हैं, "हमारा लिपिड विश्लेषण बहुत विस्तृत है। इसे उन प्रयोगशालाओं में आसानी से लागू किया जा सकता है जो वास्तविक टीबी जीवाणु पर काम करती हैं।"

निधिः इस अध्ययन को विज्ञान और प्रौद्योगिकी विभाग-विज्ञान और अभियांत्रिकी अनुसंधान बोर्ड, भारत (DST-SERB) और नॅशनल हेल्थ एंड मेडिकल रिसर्च कौंसिल प्रोजेक्ट, ऑस्ट्रेलिया से प्राप्त अनुदानों द्वारा वित्तपोषित किया गया।

VETTED / UNVETTED	Vetted
Title of Research Paper	Decoding the role of mycobacterial lipid remodelling and membrane dynamics in antibiotic tolerance
DOI of the Research Paper as a link	https://doi.org/10.1039/D4SC06618A
List of all researchers with affiliations	Anjana P. Menon - Department of Chemistry, Indian Institute of Technology Bombay; IITB-Monash Research Academy, Indian Institute of Technology Bombay; Department of Biochemistry & Molecular Biology, Monash University Tzong-Hsien Lee - IITB-Monash Research Academy, Indian Institute of Technology Bombay; Department of Biochemistry & Molecular Biology, Monash University Marie-Isabel Aguilar - IITB-Monash Research Academy, Indian Institute of Technology Bombay; Department of Biochemistry & Molecular Biology, Monash University Shobhna Kapoor - Department of Chemistry, Indian Institute of Technology Bombay; IITB-Monash Research Academy, Indian Institute of Technology Bombay

Email of researcher/s	shobhnakapoor@chem.iitb.ac.in, mibel.aguilar@monash.edu
Writer name	Manjeera Gowravaram
Transcreator name	Shilpa Inamdar-Joshi
	•
Credits to Graphic:	NIAID, CC BY 2.0, via Wikimedia Commons (cropped)
Subject [FOR EDITOR]	(Tepper)
- Please Highlight in	
RED (Multiple allowed)	Science/Technology/Engineering/Ecology/Health/Society
Article to be Sectioned	Deep Pire (Friday France) (Fig. 1) Friday (Friday France)
Under [FOR EDITOR] - Please Highlight in	Deep Dive/Friday Features/Fiction Friday/Joy of Science/News+Views/News/Scitoons/Catching
RED	up/OpEd/Featured/Sci-Qs/Infographics/Events
	ap opport and out Qui mingraphics Diversity
Social Media TAGS separated by Comma	#TB, #tuberculosis, #antibiotics, #lipidomics
	#1B, #tuberculosis, #antibiotics, #npidofines
Social Media Posts Suggestions/ Links to	
interesting relevant	
content [optional]	
[writer]	
Social Media Handles to	
be added	@iitbombay, @IndiaDST
Social Media handles of	
writer	https://www.linkedin.com/in/manjeera-gowravaram/
	CMDCDL 1 HTD
Social Media handles of	@MBCBLab_IITB
researchers	https://in.linkedin.com/in/shobhna-kapoor-44522664
Funding information	This study was supported by grants from DST-SERB, National
(Source: Research	Health and Medical Research Council Project.
paper)	Treatur and ividucar research Council I foject.
Conflict of	
Interest/Competing	
Interest information	None
(Source: Research	
paper)	

Co-PI information (Source: Research paper)	Marie-Isabel Aguilar - IITB-Monash Research Academy, Indian Institute of Technology Bombay, Department of Biochemistry & Molecular Biology, Monash University
Location:	Mumbai